Ibaitap.com sẽ hướng dẫn trả lời chi tiết cho các câu hỏi Toán lớp 7 của bộ sách Cánh diều và cuộc sống thuộc [Bài tập cuối chương 1 trong CHƯƠNG I: SỐ HỮU TỈ thuộc sách Toán 7 tập 1 bộ Cánh diều]. Nội dung chi tiết bài giải mời bạn đọc tham khảo dưới đây:
Bài 1 trang 30 SGK Toán 7 Cánh diều tập 1
a) Sắp xếp các số sau theo thứ tự tăng dần: 0,\(5;1;\frac{{ – 2}}{3}\).
b) Trong ba điểm A, B, C trên trục số dưới đây có một điểm biểu diễn số hữu tỉ 0,5. Hãy xác định điểm đó.

Lời giải tham khảo:
a) Ta có \(\frac{{ – 2}}{3} < 0,5 < 1\) nên:
Sắp xếp các số đã cho theo thứ tự tăng dần là: \(\frac{{ – 2}}{3};\,0,5;\,1\)
b) Số 0,5 nằm giữa số 0 và số 1
⇒ Điểm B biểu diễn số hữu tỉ 0,5.
Bài 2 trang 30 SGK Toán 7 Cánh diều tập 1: Tính:
a) \(5\frac{3}{4}.\frac{{ – 8}}{9}\);
b) \(3\frac{3}{4}:2\frac{1}{2}\)
c) \(\frac{{ – 9}}{5}:\frac{1}{2}\)
d) \({\left( {1,7} \right)^{2023}}:{\left( {1,7} \right)^{2021}}\).
Lời giải tham khảo:
a) \(5\frac{3}{4}.\frac{{ – 8}}{9} = \frac{{23}}{4}.\frac{{ – 8}}{9} = \frac{{ – 46}}{9}\);
b) \(3\frac{3}{4}:2\frac{1}{2} = \frac{{15}}{4}:\frac{5}{2} = \frac{{15}}{4}.\frac{2}{5} = \frac{3}{2}\)
c) \(\frac{{ – 9}}{5}:\frac{1}{2} = \frac{{ – 9}}{5}.2 = \frac{{ – 18}}{5}\)
d) \({\left( {1,7} \right)^{2023}}:{\left( {1,7} \right)^{2021}} = {\left( {1,7} \right)^{2023 – 2021}} = {\left( {1,7} \right)^2} = 2,89\).
Bài 3 trang 30 SGK Toán 7 Cánh diều tập 1: Tính một cách hợp lí:
a) \(\frac{{ – 5}}{{12}} + \left( { – 3,7} \right) – \frac{7}{{12}} – 6,3\);
b) \(2,8.\frac{{ – 6}}{{13}} – 7,2 – 2,8.\frac{7}{{13}}\)
Lời giải tham khảo:
a)
\(\begin{array}{l}\frac{{ – 5}}{{12}} + \left( { – 3,7} \right) – \frac{7}{{12}} – 6,3\\ = \left( {\frac{{ – 5}}{{12}} – \frac{7}{{12}}} \right) – \left( {3,7 + 6,3} \right)\\ = – 1 – 10 = – 11\end{array}\)
b)
\(\begin{array}{l}2,8.\frac{{ – 6}}{{13}} – 7,2 – 2,8.\frac{7}{{13}}\\ = 2,8.\left( {\frac{{ – 6}}{{13}} – \frac{7}{{13}}} \right) – 7,2\\ = 2,8.\left( { – 1} \right) – 7,2\\ = – 2,8 – 7,2 = – 10\end{array}\)
Bài 4 trang 30 SGK Toán 7 Cánh diều tập 1: Tính:
a) \(0,3 – \frac{4}{9}:\frac{4}{3} \cdot \frac{6}{5} + 1\);
b) \({\left( {\frac{{ – 1}}{3}} \right)^2} – \frac{3}{8}:{(0,5)^3} – \frac{5}{2} \cdot ( – 4)\);
c) \(1 + 2:\left( {\frac{2}{3} – \frac{1}{6}} \right) \cdot ( – 2,25)\)
d) \(\left[ {\left( {\frac{1}{4} – 0,5} \right) \cdot 2 + \frac{8}{3}} \right]:2\).
Lời giải tham khảo:
a)
\(\begin{array}{l}0,3 – \frac{4}{9}:\frac{4}{3} \cdot \frac{6}{5} + 1\\ = \frac{3}{{10}} – \frac{4}{9}.\frac{3}{4}.\frac{6}{5} + 1\\ = \frac{3}{{10}} – \frac{2}{5} + 1\\ = \frac{3}{{10}} – \frac{4}{{10}} + \frac{{10}}{{10}}\\ = \frac{9}{{10}}\end{array}\)
b)
\(\begin{array}{l}{\left( {\frac{{ – 1}}{3}} \right)^2} – \frac{3}{8}:{(0,5)^3} – \frac{5}{2} \cdot ( – 4)\\ = \frac{1}{9} – \frac{3}{8}:\frac{1}{8} – \frac{5}{2}.\left( { – 4} \right)\\ = \frac{1}{9} – 3 + 10\\ = \frac{1}{9} – \frac{{27}}{9} + \frac{{90}}{9}\\ = \frac{{64}}{9}\end{array}\)
c)
\(\begin{array}{l}1 + 2:\left( {\frac{2}{3} – \frac{1}{6}} \right) \cdot ( – 2,25)\\ = 1 + 2:\left( {\frac{4}{6} – \frac{1}{6}} \right) \cdot \left( { – \frac{9}{4}} \right)\\ = 1 + 2:\frac{1}{2}.\left( { – \frac{9}{4}} \right)\\ = 1 + 2.\frac{2}{1}.\left( { – \frac{9}{4}} \right)\\ = 1 + \left( { – 9} \right) = – 8\end{array}\)\(\begin{array}{l}1 + 2:\left( {\frac{2}{3} – \frac{1}{6}} \right) \cdot ( – 2,25)\\ = 1 + 2:\left( {\frac{4}{6} – \frac{1}{6}} \right) \cdot \left( { – \frac{9}{4}} \right)\\ = 1 + 2:\frac{1}{2}.\left( { – \frac{9}{4}} \right)\\ = 1 + 2.\frac{2}{1}.\left( { – \frac{9}{4}} \right)\\ = 1 + \left( { – 9} \right) = – 8\end{array}\)
d)
\(\begin{array}{l}\left[ {\left( {\frac{1}{4} – 0,5} \right) \cdot 2 + \frac{8}{3}} \right]:2\\ = \left[ {\left( {\frac{1}{4} – \frac{2}{4}} \right) \cdot 2 + \frac{8}{3}} \right].\frac{1}{2}\\ = \left( {\frac{{ – 1}}{4}.2 + \frac{8}{3}} \right).\frac{1}{2}\\ = \left( {\frac{{ – 1}}{2} + \frac{8}{3}} \right).\frac{1}{2}\\ = \frac{{13}}{6}.\frac{1}{2} = \frac{{13}}{{12}}\end{array}\).
Bài 5 trang 30 SGK Toán 7 Cánh diều tập 1: Tìm x, biết:
a) \(x + \left( { – \frac{2}{9}} \right) = \frac{{ – 7}}{{12}}\);
b) \(( – 0,1) – x = \frac{{ – 7}}{6}\)
c) \(( – 0,12) \cdot \left( {x – \frac{9}{{10}}} \right) = – 1,2\);
d) \(\left( {x – \frac{3}{5}} \right):\frac{{ – 1}}{3} = 0,4.\)
Lời giải tham khảo:
a)
\(\begin{array}{l}x + \left( { – \frac{2}{9}} \right) = \frac{{ – 7}}{{12}}\\x = \frac{{ – 7}}{{12}} + \frac{2}{9}\\x = \frac{{ – 21}}{{36}} + \frac{8}{{36}}\\x = \frac{{ – 13}}{{26}}\end{array}\)
Vậy \(x = \frac{{ – 13}}{{26}}\).
b)
\(\begin{array}{l}( – 0,1) – x = \frac{{ – 7}}{6}\\\frac{{ – 1}}{{10}} – x = \frac{{ – 7}}{6}\\x = \frac{{ – 1}}{{10}} + \frac{7}{6}\\x = \frac{{ – 3}}{{30}} + \frac{{35}}{{30}}\\x = \frac{{32}}{{30}}\\x = \frac{{16}}{{15}}\end{array}\)
Vậy \(x = \frac{{16}}{{15}}\)
c)
\(\begin{array}{l}( – 0,12) \cdot \left( {x – \frac{9}{{10}}} \right) = – 1,2\\\frac{{ – 3}}{{25}} \cdot \left( {x – \frac{9}{{10}}} \right) = \frac{{ – 6}}{5}\\x – \frac{9}{{10}} = \frac{{ – 6}}{5}:\left( {\frac{{ – 3}}{{25}}} \right)\\x – \frac{9}{{10}} = \frac{{ – 6}}{5}.\frac{{ – 25}}{3}\\x – \frac{9}{{10}} = 10\\x = 10 + \frac{9}{{10}}\\x = \frac{{109}}{{10}}\end{array}\)
Vậy \(x = \frac{{109}}{{10}}\).
d)
\(\begin{array}{l}\left( {x – \frac{3}{5}} \right):\frac{{ – 1}}{3} = 0,4\\\left( {x – \frac{3}{5}} \right):\frac{{ – 1}}{3} = \frac{2}{5}\\x – \frac{3}{5} = \frac{2}{5}.\frac{{ – 1}}{3}\\x – \frac{3}{5} = \frac{{ – 2}}{{15}}\\x = \frac{{ – 2}}{{15}} + \frac{3}{5}\\x = \frac{7}{{15}}\end{array}\)
Vậy \(x = \frac{7}{{15}}\).
Bài 6 trang 30 SGK Toán 7 Cánh diều tập 1: Sắp xếp các số sau theo thứ tự tăng dần:
a) \({(0,2)^0};{(0,2)^3};{(0,2)^1};{(0,2)^2};\)
b) \({( – 1,1)^2};{( – 1,1)^0};{( – 1,1)^1};{( – 1,1)^3}\).
Lời giải tham khảo:
a) \({\left( {0,2} \right)^0} = 1;{\left( {0,2} \right)^1} = 0,2;{\left( {0,2} \right)^2} = 0,04;{\left( {0,2} \right)^3} = 0,008\)
Vì 0,008 < 0, 04 < 0,2< 1 nên sắp xếp các số theo thứ tự tăng dần là:
\({(0,2)^0};{(0,2)^1};{(0,2)^2};{(0,2)^3}.\)
b) \({\left( { – 1,1} \right)^0} = 1;{\left( { – 1,1} \right)^1} = – 1,1;{\left( { – 1,1} \right)^2} = 1,21;{\left( { – 1,1} \right)^3} = – 1,331\)
Vì -1,331 < -1,1 < 1 < 1,21 nên sắp xếp các số theo thứ tự tăng dần là:
\({( – 1,1)^3};{( – 1,1)^1}{( – 1,1)^0};{( – 1,1)^2}\)
Bài 7 trang 30 SGK Toán 7 Cánh diều tập 1: Trọng lượng của một vật thể trên Mặt Trăng bằng khoảng \(\frac{1}{6}\) trọng lượng của nó trên Trái Đất. Biết trọng lượng của một vật trên Trái Đất được tính theo công thức: \(P = 10\;{\rm{m}}\) với \(P\) là trọng lượng của vật tính theo đơn vị Niu-tơn (kí hiệu \({\rm{N}}\)); \(m\) là khối lượng của vật tính theo đơn vị ki-lô-gam. (Nguồn: Khoa học tự nhiên 6, NXB Đại học Sư phạm, 2021). Nếu trên Trái Đất một nhà du hành vũ trụ có khối lượng là \(75,5\;{\rm{kg}}\) thì trọng lượng của người đó trên Mặt Trăng sẽ là bao nhiêu Niu-tơn (làm tròn kết quả đến hàng phần trăm)?
Lời giải tham khảo:
Trọng lượng người đó trên Trái Đất là: 75,5.10 = 755 (N)
Trọng lượng người đó trên Mặt Trăng là: \(755.\dfrac{1}{6} \approx 125,83\) (N).
Bài 8 trang 31 SGK Toán 7 Cánh diều tập 1: Một người đi quãng đường từ địa điểm \(A\) đến địa điểm \(B\) với vận tốc \(30\;{\rm{km}}/{\rm{h}}\) mất 3,5 giờ. Từ địa điểm \(B\) quay trở về địa điểm \(A\), người đó đi với vận tốc \(36\;{\rm{km}}/{\rm{h}}\). Tính thời gian đi từ địa điểm \(B\) quay trở về địa điểm \(A\) Lời giải tham khảo:
Quãng đường AB dài: 30. 3,5 = 105 (km)
Thời gian người đó đi quãng đường từ địa điểm B về địa điểm A là:
\(105:36 = \frac{{35}}{{12}}\) (giờ).
Bài 9 trang 31 SGK Toán 7 Cánh diều tập 1: Một trường trung học cơ sở có các lớp 7A, 7B, 7C, 7D, 7E; mỗi lớp đều có 40 học sinh. Sau khi sơ kết Học kì I, số học sinh ở mức Tốt của mỗi lớp đó được thể hiện qua biểu đồ cột ở Hình 5 .

a) Lớp nào có số học sinh ở mức Tốt ít hơn một phần tư số học sinh của cả lớp?
b) Lớp nào có số học sinh ở mức Tốt nhiều hơn một phần ba số học sinh của cả lớp?
c) Lớp nào có tỉ lệ học sinh ở mức Tốt cao nhất, thấp nhất?
Lời giải tham khảo:
a) Một phần tư số học sinh cả lớp là: \(\frac{1}{4}.40 = 10\) (học sinh).
⇒Lớp 7C và 7E có số học sinh ở mức Tốt ít hơn một phần tư số học sinh của cả lớp.
b) Một phần ba số học sinh cả lớp là: \(\frac{1}{3}.40 \approx 13\)(học sinh).
⇒ Lớp 7A và 7D có số học sinh ở mức Tốt nhiều hơn một phần ba số học sinh của cả lớp.
c) Lớp 7D có tỉ lệ học sinh ở mức Tốt cao nhất.
Lớp 7E có tỉ lệ học sinh ở mức Tốt thấp nhất.
Bài 10 trang 31 SGK Toán 7 Cánh diều tập 1: Sản lượng chè và hạt tiêu xuất khẩu của Việt Nam qua một số năm được biểu diễn trong biểu đồ cột kép ở Hình 6 .
a) Những năm nào sản lượng chè xuất khẩu trên 1 triệu tấn? Sản lượng hạt tiêu xuất khẩu trên 0,2 triệu tấn?
b) Năm nào Việt Nam có sản lượng chè xuất khẩu lớn nhất? Sản lượng hạt tiêu xuất khẩu lớn nhất?
c) Tính tỉ số phần trăm của sản lượng chè xuất khẩu năm 2013 và sản lượng chè xuất khẩu năm 2018.

Lời giải tham khảo:
a) Năm 2015 và năm 2016 sản lượng chè xuất khẩu trên 1 triệu tấn.
Năm 2016, 2017, 2018 sản lượng hạt tiêu xuất khẩu trên 0,2 triệu tấn.
b) Năm 2016 Việt Nam có sản lượng chè xuất khẩu lớn nhất.
Năm 2018 Việt Nam sản lượng hạt tiêu xuất khẩu lớn nhất.
c) Tỉ số phần trăm của sản lượng chè xuất khẩu năm 2013 và sản lượng chè xuất khẩu năm 2018 là:
\(\frac{{936,3}}{{994,2}}.100\% = 94,18\% \)
CHƯƠNG I: SỐ HỮU TỈ
Bài 2 Cộng, trừ, nhân, chia số hữu tỉ
Bài 3 Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
Bài 4 Thứ tự thực hiện các phép tính. Quy tắc chuyển vế
Bài 5 Biểu diễn thập phân của một số hữu tỉ
CHƯƠNG II: SỐ THỰC
Bài 1 Số vô tỉ. Căn bậc hai số học
Bài 3 Giá trị tuyệt đối của một số thực
Bài tập cuối chương II trang 69
HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM
Bài Hoạt động thực hành và trải nghiệm trang 71
Bài Hoạt động thực hành và trải nghiệm trang 88
CHƯƠNG III: HÌNH HỌC TRỰC QUAN
Bài 1 Hình hộp chữ nhật. Hình lập phương
Bài 2 Hình lăng trụ đứng tam giác, hình lăng trụ đứng tứ giác
Bài tập cuối chương III trang 87
CHƯƠNG IV: GÓC. ĐƯỜNG THẲNG SONG SONG
Bài 2 Tia phân giác của một góc